Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
China Journal of Chinese Materia Medica ; (24): 2954-2959, 2020.
Article in Chinese | WPRIM | ID: wpr-828062

ABSTRACT

In this study, we aimed to establish a rat liver micro-tissue evaluation system to evaluate the hepatotoxicity of the main monomers in Polygonum multiflorum. Rat primary hepatocytes were isolated and purified by two-step in situ perfusion method to prepare hepatic parenchymal cells. The ultra-low adsorption plate and the inverted model were used to establish an in vitro hepatotoxicity evaluation system. After the system was established, the main monomer components(monanthone with emodin type, rhein, emodin, emodin-8-O-β-D-glucopyranoside, physcion) of P. multiflorum were selected for in vitro hepatotoxicity evaluation. This study showed that the primary cells of the liver can form liver micro-tissues in the low adsorption plate method and the mold perfusion method, with good liver structure and function, which can be used to evaluate the hepatotoxicity of the drug to be tested after long-term administration. The five monomers to be tested in P. multiflorum can significantly affect the proliferation of primary liver micro-tissues in rats in a dose-and time-dependent manner. The hepatotoxic effects were as follows: monanthone with emodin type > rhein > emodin > emodin-8-O-β-D-glucopyranoside > physcion. The results suggested that the emodin-type monoterpene and rhein might be the potential hepatotoxic components, while the metabolites of emodin-8-O-β-D-glucoside and emodin methyl ether showed more toxic risks. The rat primary hepatocyte micro-tissue model system established in this experiment could be used to achieve long-term drug administration in vitro, which was consistent with the clinical features of liver injury caused by long-term use of P. multiflorum. The experimental results provided important information and reference on the clinical application and toxic component of P. multiflorum.


Subject(s)
Animals , Rats , Chemical and Drug Induced Liver Injury , Emodin , Fallopia multiflora , Glucosides , Plant Extracts , Polygonum
2.
Drug Evaluation Research ; (6): 627-632, 2017.
Article in Chinese | WPRIM | ID: wpr-619529

ABSTRACT

Objective To study the inhibitory effects ofisorhamnetin on six kinds of CYPs of liver in vitro,and the toxic effect on rat hepatocytes Methods This report uses warm incubation of human liver microsomes in vitro to investigate the inhibition of isorhamnetin on 6 kinds of CYPs (CYP2C19,CYP2D6,CYP3A4,CYP2E1,CYP1A2 and CYP2C9),and using HPLC-MS/MS to detect product of metabolism as well as analysing of the pathways of metabolic.At the same time,using rat primary hepatocytes which has low CYPs activity in vitro to explore whether the use of isorhamnetin will cause effects on the ALT,AST and LDH of hepatocytes.Results Isorhamnetin has inhibition effects on CYP2E1 and CYP1A2,the inhibition rate were 59.48% and 39.91%,respectively.Methylated metabolite is produced after incubating of isorhamnetin and HLMs.The isorhmnetin becomes high polarity and water solubility metabolite 3,3',4',5,7-hydroxyflavone.Isorhamnetin of 30,100 and 300 μmol/L cause a significant rise of ALT and LDH in primary cultured rat hepatocytes cultured (P < 0.01).isorharnnetin of 100 μmol/L cause a rise of AST in primary cultured rat hepatocytes cultured (P < 0.05) and 300 μmol/L cause a significant rise (P < 0.01).It was a dose-dependent manner.Conclusion Isorhamnetin in vitro mainly metabolized by HLMs,and at the same time have a certain inhibitory effect on CYP2E1 and CYP1A2,which may cause the drugs which are metabolized by CYP2E1 and CYP1A2 in vivo accumulation that lead to a series of drug interactions.The results also indicate that heavy use of isorhamnetin cause some adverse effects on hepatocytes,and it was a dose-dependent manner.Individuals need to pay attention to the dose ofisorhamnetin and the potential drug interactions.

SELECTION OF CITATIONS
SEARCH DETAIL